WILEY

Algorithm AS 148: The Tackknife

Author(s): Norman S. Matloff
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 29, No. 1 (1980), pp. 115-117

Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346432
Accessed: 27-06-2016 09:18 UTC

REFERENCES

Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/2346432?seq=1\&cid=pdf-reference\#references_tab_contents You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://about.jstor.org/terms

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Wiley, Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Royal Statistical Society. Series C (Applied Statistics)

Algorithm AS 148

The Jackknife

By Norman S. Matloff
Division of Statistics, University of California at Davis, Davis, CA, U.S.A.

Keywords: JACKKNIFE

Language

ISO Fortran

Description and Purpose

Suppose $\hat{\theta}$ is an estimate of a parameter θ, based on a random sample X_{1}, \ldots, X_{n}; here we allow both θ and the X_{i} to be vector-valued. For each $i=1, \ldots, n$, define the "pseudovalue" $\hat{\theta}_{J, i}$ to be $n \hat{\theta}-(n-1) \hat{\theta}_{(-i)}$, where $\hat{\theta}_{(-i)}$ is the estimate of θ which has the same form as $\hat{\theta}$ but which is based on $X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}$. Then $\hat{\theta}_{J}=n^{-1} \Sigma \hat{\theta}_{J, i}$, summing over i from 1 to n, is called the jackknife estimator of θ corresponding to $\hat{\theta}$.

In the "smooth" case, $\hat{\theta}_{J}$ has smaller bias than $\hat{\theta}$ and is asymptotically normally distributed with estimated covariance matrix $n^{-1}\left\{(n-1)^{-1}\left(\hat{\theta}_{J, i}-\hat{\theta}_{j}\right)\left(\hat{\theta}_{J, i}-\hat{\theta}_{J}\right)^{t}\right\}$ (see Cox and Hinkley, 1975). The second of these two properties is useful in several ways:

1. $\hat{\theta}_{J}$ can be used to form distribution-free confidence intervals and hypothesis tests. For example, the classical χ^{2}-based inference procedures for a population variance σ^{2} are not robust with respect to the assumption that the sampled population is normally distributed. However, we can apply the jackknife procedure to the sample variance s^{2} (or for greater accuracy, to $\log \left(s^{2}\right)$) to derive large-sample inference procedures which are valid without the normality assumption.
2. $\hat{\theta}_{J}$ can also be used to make some inferences more convenient. For example, suppose $\hat{\theta}=f\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{r}\right)$, where f is a smooth, real-valued function and $\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{r}\right)^{t}$ is an asymptotically multivariate normally distributed estimator of $\left(\gamma_{1}, \ldots, \gamma_{r}\right)^{t}$. Here we might consider making inferences on $\theta=f\left(\gamma_{1}, \ldots, \gamma_{r}\right)$ using the "delta method" (Rao, 1973, p. 388). However, this may be inconvenient if the derivatives of f are complicated. Use of the jackknife procedure (with the algorithm presented here) may be much more convenient.
3. The pseudovalues $\hat{\theta}_{J, i}$ may be useful in detecting outliers and evaluating their influence on $\hat{\theta}$ and $\hat{\theta}_{J}$.
In some cases, the sample size n may be too large for economical computation. Here one can use "jackknifing by groups" : Suppose $n=g l$ for positive integers g and l. Divide the sample into g groups of size l. In this version of the jackknife, $\hat{\theta}_{(-i)}$ and $\hat{\theta}_{J, i}$ are based on deletion of the i th group of observations from the sample, rather than deletion of the i th observation. Also, in the expressions for $\hat{\theta}_{J, i}, \hat{\theta}_{J}$ and the estimated covariance matrix of $\hat{\theta}_{J}$, the quantity n is replaced everywhere by g.

A nice review paper on the jackknife is Miller (1974).
Structure
SUBROUTINE JKKN(X, K, N, TH, THJ, LTH, COV, PS, NGRP, IGSIZE, IFAULT)
Formal parameters
$X \quad$ Real array (K, N)

K
N
input: contains the sample X_{1}, \ldots, X_{N}; initially $X(J, I)$ contains the J th component of X_{I}; the array is rearranged during computation input : number of components in each observation
input : sample size

TH	Real array $(L T H)$
THJ	Real array $(L T H)$
LTH	
COV	Real array $(L T H, L T H)$
$P S$	Real array $(L T H, N G R P)$

NGRP

IGSIZE
 IFAULT

Auxiliary subroutines:
The base estimator $\hat{\theta}$ is calculated by the user-supplied subroutine THTHT, whose form should be

SUBROUTINE THTHT(X, K, M, TH, LTH)
REALX(K,M), TH(LTH)
[Here $\hat{\theta}$ is calculated, based on the first M observations currently stored in X. The array X is assumed to have the same structure as in JKKN, although $J K K N$ usually calls THTHT with M equal to $N-I G S I Z E$ rather than N. The value $\hat{\theta}$ is returned as an output to $J K K N$ through the THTHTarray TH; all other parameters in THTHTare inputs to that routine.]
RETURN
END

References

Cox, D. R. and Hinkley, D. V. (1975). Theoretical Statistics. London : Chapman and Hall. Miller, R. G. (1974). The jackknife-a review. Biometrika, 61, 1-15.
Rao, C. R. (1973). Linear Statistical Inference and its Applications, 2nd ed. London : Wiley.

```
    * IGOSIZE, IFAULT)
C
C
C
C
REAL X(K, N), TH(LTH), THJ(LTH), COV(LTH, LTH), PS(LTH, NGRP)
    IFAULT == 1
    IF (NGRP .LE. 1) RETURN
    IFAULT == 0
    NGRP1 = NGRP - 1
    NN = NGRP1 * IGSIZE
    ENGRP = NGRP
    ENGRP1 = NGRP1
    ENN = ENGRP * ENGRP1
    IGSZ1 = IGSIZE + 1
    KI = K * IGSIZE
        KI = NUMBER OF X COMPONENTS IN A GROUP.
    LLN = NGRP1 * KI
        FIRST CALCULATE NGRP * THETAHAT AND STORE IT IN TH.
    CALL THTHT(X, K, N, TH, LTH)
    DO 10I = 1, LTH
10 TH(I) = ENGRP * TH(I)
C
C
C
C
C
C
        ALGIRITHM AS 148 APPL. STATIST. (1980) VOL.29, NO.1
    REMGNAL OF BIAS BY THE JACKKNIFE PROCEDURE
C
```

```
        IG1 =0
        DO 50 I = 1, NGRP
        IF (I .EQ. NGRP) GOTO 25
```

```
        IG2 = NN
```

 DO 20 IG \(=1\), IGSIZE
 IG1 \(=\mathbf{I G 1}+\mathbf{i}\)
 \(I G 2=I G 2+1\)
 DO \(15 \mathrm{~J}=1\), K
 TEMP \(=\mathrm{X}(\mathrm{J}, \mathrm{IG} 2)\)
 \(X(J\), IGR) \(=X(J, ~ I G 1)\)
 \(X(J\), IG1 \()=\) TEMP
 15 CONTINUE
 20 CONTINUE
 IF (I .LT. NGRP) CALL THTHT(X, K, NN, THJ, LTH)
 25 IF (I 。EQ. NGRP) CALL THTHT(X (1, IGSZ1), K, NN, THJ, LTH)
 DO 35 II \(=1\), LTH
 \(35 \mathrm{PS}(\mathrm{II}, \mathrm{I})=\mathrm{TH}(\mathrm{II})-\mathrm{THJ}(\mathrm{II}) *\) ENGRP1
 50 CONTINUE
 C
C
C
C
C
C
C
$75 \operatorname{COV}(1, J)=0.0$
75 CONTINUE
CALCULATE JACKKNIFED VERSION OF THETAHAT
AND STORE IT IN THJ.
DO $100 \mathrm{I}=1$, NGRP
DO 90 II $=1$, ITH
$90 \operatorname{THJ}(I I)=\operatorname{THJ}(I I)+\operatorname{PS}(I I, I)$
100 CONTINUE
DO $110 \mathrm{II}=1$, LTH
$110 \mathrm{THJ}(\mathrm{II})=\mathrm{THJ}(\mathrm{II}) /$ ENGRP
C
C
C
C
C
DO 125 II $=1$, LTH
THJII $=$ THJ (II)
DO $125 \mathrm{JJ}=\mathrm{II}$, LTH
THJJJ $=$ THJ (JJ)
DO $115 \mathrm{I}=1$, NGRP
$\operatorname{COV}(I I, J J)=\operatorname{COV}(I I, J J)+$
* (PS(II, I) - THJII) * (PS(JJ, I) - THJJJ)
115 CONTINUE
115 CONTINUE
$\stackrel{\square}{c}$
C
C
C
C
C
C
CALCULATE THE APPROXIMATE COVARIANCE MATRIX OF
THE JACKKNIFED THETAHAT, AND STORE IT IN CON.
IF LTH .GT. 1, COPY THE UPPER-TRIANGULAR SECTION
OF COV INTO THE IOWER-TRIANGULAR SECTION.
IF (LTH .FQ. 1) GOTO 200
DO $175 \mathrm{II}=2$, LTH
III = II - 1
DO $175 \mathrm{JJ}=1$, 111
$\operatorname{COV}(I I, J J)=\operatorname{COV}(J J, I I)$
175 CONTINUE
200 DO 210 II $=1$, LTH
DO $210 \mathrm{JJ}=1$, LTH
$210 \operatorname{cov}(I I, J J)=\operatorname{cov}(I I, J J) / \operatorname{ENN}$
RETURN
END

