
 
Algorithm AS 148: The Jackknife
Author(s): Norman S. Matloff
Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 29, No. 1
(1980), pp. 115-117
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2346432
Accessed: 27-06-2016 09:18 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/2346432?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

 

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

Wiley, Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to
Journal of the Royal Statistical Society. Series C (Applied Statistics)

This content downloaded from 128.163.2.206 on Mon, 27 Jun 2016 09:18:31 UTC
All use subject to http://about.jstor.org/terms



 STATISTICAL ALGORITHMS 115

 Algorithm AS 148

 The Jackknife

 By NORMAN S. MATLOFF

 Division of Statistics, University of California at Davis, Davis, CA, U.S.A.

 Keywords: JACKKNIFE

 LANGUAGE

 ISO Fortran

 DESCRIPTION AND PURPOSE

 Suppose 0 is an estimate of a parameter 0, based on a random sample X1, ..., X"; here we
 allow both 0 and the Xi to be vector-valued. For each i = 1, ..., n, define the "pseudovalue" 0j, i to
 be nO -(n-1) 0(- i where 6(-i) is the estimate of 0 which has the same form as & but which is
 based onX1,,..., Xi- ,,Xi+ , ..., X,. ThenDJ = n- Y z J, i, summing over ifroml1to n, iscalled the
 jackknife estimator of 0 corresponding to u.

 In the "smooth" case, 0j has smaller bias than & and is asymptotically normally distributed
 with estimated covariance matrix n- 1{(n - 1)-' (j, i- Qj)(OJ i - j)t} (see Cox and Hinkley,
 1975). The second of these two properties is useful in several ways:

 1. 0j can be used to form distribution-free confidence intervals and hypothesis tests. For
 example, the classical X2-based inference procedures for a population variance a 2 are not
 robust with respect to the assumption that the sampled population is normally
 distributed. However, we can apply the jackknife procedure to the sample variance s2 (or
 for greater accuracy, to log (s2)) to derive large-sample inference procedures which are
 valid without the normality assumption.

 2. Oj can also be used to make some inferences more convenient. For example, sup-
 pose 0 = (y1,...,Yr), where f is a smooth, real-valued function and ( ..., j)t is an
 asymptotically multivariate normally distributed estimator of(y1, ..., yr)t. Here we might
 consider making inferences on 0 = (y1,...,Yr) using the "delta method" (Rao, 1973, p.
 388). However, this may be inconvenient if the derivatives offare complicated. Use of the
 jackknife procedure (with the algorithm presented here) may be much more convenient.

 3. The pseudovalues 0, i may be useful in detecting outliers and evaluating their influence
 on 0 and Qj.

 In some cases, the sample size n may be too large for economical computation. Here one can
 use "jackknifing by groups" : Suppose n = gl for positive integers g and 1. Divide the sample into
 g groups of size 1. In this version of the jackknife, &(-i) and Oj, i are based on deletion of the ith
 group of observations from the sample, rather than deletion of the ith observation. Also, in the
 expressions for Oj, t Fj and the estimated covariance matrix of 6j, the quantity n is replaced
 everywhere by g.

 A nice review paper on the jackknife is Miller (1974).

 STRUCTURE

 SUBROUTINE JKKN(X, K, N, TH, THJ, LTH, COV, PS, NGRP, IGSIZE, IFAULT)

 Formal parameters
 X Real array (K, N) input: contains the sample X1, ... , XN; initially

 X(J, I) contains the Jth component of XI;
 the array is rearranged during computation

 K input: number of components in each observation
 N input: sample size
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 TH Real array (LTH) output: work array
 THJ Real array (LTH) output: f.
 LTH input: number of components in 0

 COV Real array (LTH, LTH) output: estimated covariance matrix of Oj
 PS Real array (LTH,NGRP) output: contains the pseudovalues Q,9 1, ... ..J., NGRP;

 PS(L, I) contains the Lth component of

 OJ, L
 NGRP input: g, the number of groups (ordinarily equal to

 N)
 IGSIZE input: 1, the group size (ordinarily equal to 1)
 IFAULT output: equals 1 if NGRP = 1 (in which case com-

 putation is suppressed); equals 0 otherwise
 Auxiliary subroutines:

 The base estimator 0 is calculated by the user-supplied subroutine THTHT, whose form
 should be

 SUBROUTINE THTHT(X, K, M, TH, LTH)
 REALX(K,M), TH(LTH)

 [Here 0 is calculated, based on the first M observations currently stored in X. The array X is
 assumed to have the same structure as in JKKN, although JKKN usually calls THTHT
 with M equal to N - IGSIZE rather than N. The value 0 is returned as an output to JKKN
 through the THTHTarray TH; all other parameters in THTHTare inputs to that routine.]

 RETURN
 END

 REFERENCES

 Cox, D. R. and HINKLEY, D. V. (1975). Theoretical Statistics. London: Chapman and Hall.
 MILLER, R. G. (1974). The jackknife-a review. Biometrika, 61, 1-15.
 RAO, C. R. (1973). Linear Statistical Inference and its Applications, 2nd ed. London: Wiley.

 SUBROUTINE JKKN(X, K, N, TH, THJ, LTH, COY, PS, NGRP,

 * IGSIZE, IFAULT)
 C

 C ALGORITM AS 148 APPL. STATIST. (1980) VOL.29, NO.1
 C

 C REMCNVAL OF BIAS BY THE JACKKNIFE PROCEDURE
 C

 REAL X(K, N), TH(LTH), THJ(LTH), COV(LTH, LTH), PS(LTH, NGRP)

 IFAULT = 1

 IF (NGRP oLR. 1) RETURN

 IFAULT 0

 NGRP1 NGRP - 1

 NN = NGRP1 * IGSIZE

 ENGRP NGRP

 ENGRP1 NGRP1

 ENN = ENGRP * ENGRP1

 IGSZ1 = IGSIZE + 1

 KI = K * IGSIZE

 C

 C KI = NUMBER OF X COMPONENTS IN A GRWUP.

 C

 LLN = NGRP1 * KI
 C

 C FIRST CALCULATE NGRP * THETAHAT AND STORE IT IN TH.
 C

 CALL THTHT(X, K, N, TH, LTH)
 DO 10 I = 1, LTH

 10 TH(I = ENGRP * TH(I

 C

 C CALCUIATE THE NGRP PSEUDOVALUES.

 C
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 IGI = 0

 1)0 50 1 = 1, NGRP

 IF (I .EQ. NGRPN GtrO 25
 C

 C TRADE THE I-TH GROUP OF OBSERVATIONS

 C (AS STORED CURRENTLY) WITH THE NGRP-TH

 C GROUIP, SO AS TO DELETE THE I-TH GROUP.

 C

 IG2 = NN

 DO 20 IG =1, IGSIZE

 IGI = IGI + 1

 IG2 = IGa + 1

 DO 15 J = 1, K

 TEMP = X(J, IG2)
 X(J, IG2) = X(J, IGI)

 X(J, IG1) = TEMP
 15 CONTINUE

 20 CONTINUE

 IF (I *LT. NGRP) CALL THTHT(X, K, NN, THJ, LTH)
 25 IF (I .EQ. NGRP) CALL TlTHT(X(1, IGSZI), K, NN, THJ, LTH)

 DO 35 II 1, LTH

 35 PS(II, I) - TH(II) - THJ(II) * ENGRP1
 50 CONTINUE

 C

 C INITIALIZE.
 C

 DO 75 I = 1, LTH
 THJ(I) = 0.0
 DO 75 J = 1, LTH
 COV(I, J' = 0.0

 75 CONTINuE
 C

 C CALCULATE JACKKNIFED VERSION OF THETAHAT
 C AND STORE IT IN THJ.
 C

 DO 100 I = 1, NG,RP

 DO 90 IO = 1, LTH
 90 THJ(II) = THJ(II + PS(II, I)

 100 CONTIMNE
 DO 110 11 = 1, LTH

 110 THJ(II) = THJ(II) / ENGRP
 C

 C CALCUIATE THE APPROXIMATE COVARIANCE MATRIX OF
 C THE JACKKNIFED THETAHAT, AND STORE IT IN COV.
 C

 DO 125 11 = 1, LTH
 THJII = THJ(II)

 DO 125 JJ = II, LTH
 THJJJ = THJ(JJN
 DO 115 1 =1, NGRP
 CaV(II, JJ) COV(II, JJ) +

 * (PS(II, I) - THJII) * (PS(JJ, I) - THJJJ)
 115 CONTINUE

 125 CONTINUE

 C IF LTH .GT. 1, COPY THE UPPER-TRIANGULAR SECTION
 C OF COV INTO THE IWNER-TRIANGULAR SECTION.
 C

 IF (LTH .EQ. 1) GCNO 200
 DO 175 II = 2, LTH

 III = II - 1

 DO 175 JJ = 1, III

 CaV(II, JJN = COV(JJ, II)
 175 CONTINUJE
 200 DO 210 II = 1, LTH

 DO 210 JJ = 1, LTH
 210 CON(II, JJN = CON(II, JJ / ENN

 RETURN
 END

This content downloaded from 128.163.2.206 on Mon, 27 Jun 2016 09:18:31 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 115
	p. 116
	p. 117

	Issue Table of Contents
	Applied Statistics, Vol. 29, No. 1 (1980) pp. 1-118
	Front Matter
	Practical Datas Analysis [pp. 1-2]
	Genstat [pp. 2-4]
	Shrunken Estimators in Discriminant and Canonical Variate Analysis [pp. 5-13+24]
	Goodness of Link Tests for Generalized Linear Models [pp. 15-23, 14]
	Selection of Dose Levels for Estimating a Percentage Point of a Logistic Quantal Response Curve [pp. 25-33]
	Random Occurrence of Stripes in a Fabric [pp. 34-38]
	On a Distribution-Free Method for Combining Estimates of a Ratio of Means [pp. 39-42]
	Production Planning for a Manpower System with a Constant Level of Recruitment [pp. 43-49]
	Outliers in Circular Data [pp. 50-57]
	Interval Estimation for the Three-Parameter Lognormal Distribution via the Likelihood Function [pp. 58-68]
	On Inferences Concerning a Common Correlation Coefficient [pp. 69-76]
	Fitting Segmented Regression Models by Grid Search [pp. 77-84]
	Miscellanea
	Marginal Skewness and Kurtosis in Testing Multivariate Normality [pp. 85-87]

	Forecasting with Misspecified Models [pp. 87-92]
	Correction: A Simultaneous Test Procedure for Contingency Table Models [pp. 92]
	Letters to the Editors [pp. 93-97]
	Book Reviews
	Review: untitled [pp. 98]
	Review: untitled [pp. 99]
	Review: untitled [pp. 99-100]
	Review: untitled [pp. 100]
	Review: untitled [pp. 100-101]
	Review: untitled [pp. 101-102]
	Review: untitled [pp. 102-103]
	Review: untitled [pp. 103-104]
	Review: untitled [pp. 104-105]
	Review: untitled [pp. 105]
	Review: untitled [pp. 105-106]
	Review: untitled [pp. 106]

	Statistical Algorithms
	Algorithm AS 146: Construction of Joint Probability of Selection for Systematic P.P.S. Sampling [pp. 107-112]
	Algorithm AS 147: A Simple Series for the Incomplete Gamma Integral [pp. 113-114]
	Algorithm AS 148: The Jackknife [pp. 115-117]
	Correction: Algorithm AS 129: The Power Function of the "Exact" Test for Comparing Two Binomial Distributions [pp. 118]

	Back Matter



