WILEY

Algorithm AS 148: The Jackknife Author(s): Norman S. Matloff Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 29, No. 1 (1980), pp. 115-117 Published by: Wiley for the Royal Statistical Society Stable URL: http://www.jstor.org/stable/2346432 Accessed: 27-06-2016 09:18 UTC

REFERENCES

Linked references are available on JSTOR for this article: http://www.jstor.org/stable/2346432?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about_istor.org/terms

http://about.jstor.org/terms

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Wiley, Royal Statistical Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of the Royal Statistical Society. Series C (Applied Statistics)

The Jackknife

By NORMAN S. MATLOFF

Division of Statistics, University of California at Davis, Davis, CA, U.S.A.

Keywords : JACKKNIFE

LANGUAGE

ISO Fortran

DESCRIPTION AND PURPOSE

Suppose $\hat{\theta}$ is an estimate of a parameter θ , based on a random sample X_1, \dots, X_n ; here we allow both θ and the X_i to be vector-valued. For each $i = 1, \dots, n$, define the "pseudovalue" $\hat{\theta}_{J,i}$ to be $n\hat{\theta} - (n-1)\hat{\theta}_{(-i)}$, where $\hat{\theta}_{(-i)}$ is the estimate of θ which has the same form as $\hat{\theta}$ but which is based on $X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n$. Then $\hat{\theta}_J = n^{-1} \Sigma \hat{\theta}_{J,i}$, summing over *i* from 1 to *n*, is called the jackknife estimator of θ corresponding to $\hat{\theta}$.

In the "smooth" case, $\hat{\theta}_J$ has smaller bias than $\hat{\theta}$ and is asymptotically normally distributed with estimated covariance matrix $n^{-1}\{(n-1)^{-1}(\hat{\theta}_{J,i}-\hat{\theta}_J)(\hat{\theta}_{J,i}-\hat{\theta}_J)^t\}$ (see Cox and Hinkley, 1975). The second of these two properties is useful in several ways :

- 1. $\hat{\theta}_J$ can be used to form distribution-free confidence intervals and hypothesis tests. For example, the classical χ^2 -based inference procedures for a population variance σ^2 are not robust with respect to the assumption that the sampled population is normally distributed. However, we can apply the jackknife procedure to the sample variance s^2 (or for greater accuracy, to $\log(s^2)$) to derive large-sample inference procedures which are valid without the normality assumption.
- ∂_J can also be used to make some inferences more convenient. For example, suppose θ = f(ŷ₁,...,ŷ_r), where f is a smooth, real-valued function and (ŷ₁,...,ŷ_r)^t is an asymptotically multivariate normally distributed estimator of (γ₁,...,γ_r)^t. Here we might consider making inferences on θ = f(γ₁,...,γ_r) using the "delta method" (Rao, 1973, p. 388). However, this may be inconvenient if the derivatives of f are complicated. Use of the jackknife procedure (with the algorithm presented here) may be much more convenient.
- 3. The pseudovalues $\hat{\theta}_{J,i}$ may be useful in detecting outliers and evaluating their influence on $\hat{\theta}$ and $\hat{\theta}_{J}$.

In some cases, the sample size *n* may be too large for economical computation. Here one can use "jackknifing by groups": Suppose n = gl for positive integers *g* and *l*. Divide the sample into *g* groups of size *l*. In this version of the jackknife, $\hat{\theta}_{(-i)}$ and $\hat{\theta}_{J,i}$ are based on deletion of the *i*th group of observations from the sample, rather than deletion of the *i*th observation. Also, in the expressions for $\hat{\theta}_{J,i}$, $\hat{\theta}_J$ and the estimated covariance matrix of $\hat{\theta}_J$, the quantity *n* is replaced everywhere by *g*.

A nice review paper on the jackknife is Miller (1974).

STRUCTURE

SUBROUTINE JKKN(X, K, N, TH, THJ, LTH, COV, PS, NGRP, IGSIZE, IFAULT)

Formal	parameters	
X	Real array (K, N)	input : contains the sample X_1, \ldots, X_N ; initially
		$X(J,I)$ contains the Jth component of X_{I} ; the array is rearranged during computation
K		input : number of components in each observation
Ν		input : sample size

116	APPLIED STATISTICS	
TH	Real array (<i>LTH</i>)	output : work array
THJ	Real array (LTH)	output : $\hat{\theta}_J$
LTH		input : number of components in θ
COV	Real array (LTH, LTH)	output : estimated covariance matrix of $\hat{\theta}_{J}$
PS	Real array (LTH, NGRP)	output : contains the pseudovalues $\hat{\theta}_{J,1}, \dots, \hat{\theta}_{J,NGRP}$;
		PS(L, I) contains the Lth component of
		$\hat{\theta}_{J,L}$
NGRP		input : g , the number of groups (ordinarily equal to
		N)
IGSIZE		input : <i>l</i> , the group size (ordinarily equal to 1)
IFAULT		output : equals 1 if $NGRP = 1$ (in which case com-
		putation is suppressed); equals 0 otherwise

Auxiliary subroutines:

The base estimator $\hat{\theta}$ is calculated by the user-supplied subroutine *THTHT*, whose form should be

SUBROUTINE THTHT(X, K, M, TH, LTH) REALX(K,M), TH(LTH)

[Here $\hat{\theta}$ is calculated, based on the first *M* observations currently stored in *X*. The array *X* is assumed to have the same structure as in *JKKN*, although *JKKN* usually calls *THTHT* with *M* equal to N - IGSIZE rather than *N*. The value $\hat{\theta}$ is returned as an output to *JKKN* through the *THTHT* array *TH*; all other parameters in *THTHT* are inputs to that routine.] *RETURN* END

REFERENCES

Cox, D. R. and HINKLEY, D. V. (1975). Theoretical Statistics. London : Chapman and Hall. MILLER, R. G. (1974). The jackknife—a review. Biometrika, 61, 1–15. RAO, C. R. (1973). Linear Statistical Inference and its Applications, 2nd ed. London : Wiley.

```
SUBROUTINE JKKN(X, K, N, TH, THJ, LTH, COV, PS, NGRP,
     * IGSIZE, IFAULT)
С
С
         ALGORITHM AS 148 APPL. STATIST. (1980) VOL.29, NO.1
С
         REMOVAL OF BIAS BY THE JACKKNIFE PROCEDURE
С
č
      REAL X(K, N), TH(LTH), THJ(LTH), COV(LTH, LTH), PS(LTH, NGRP)
      IFAULT = 1
      IF (NGRP .LE. 1) RETURN
      IFAULT = 0
      NGRP1 = NGRP - 1
      NN = NGRP1 * IGSIZE
      ENGRP = NGRP
      ENGRP1 = NGRP1
      ENN = ENGRP * ENGRP1
      IGSZ1 = IGSIZE + 1
      KI = K * IGSIZE
С
С
         KI = NUMBER OF X COMPONENTS IN A GROUP.
С
      LLN = NGRP1 * KI
С
С
         FIRST CALCULATE NGRP * THETAHAT AND STORE IT IN TH.
С
      CALL THTHT(X, K, N, TH, LTH)
      DO 10 I = 1, LTH
   10 TH(I) = ENGRP * TH(I)
С
С
         CALCULATE THE NGRP PSEUDOVALUES.
С
```

```
\mathbf{IG1} = \mathbf{0}
       DO 50 I = 1, NGRP
IF (I .EQ. NGRP) GOTO 25
С
С
           TRADE THE I-TH GROUP OF OBSERVATIONS
С
           (AS STORED CURRENTLY) WITH THE NGRP-TH
С
          GROUP, SO AS TO DELETE THE I-TH GROUP.
С
       IG_2 = NN
       DO 20 IG = 1, IGSIZE
       IG1 = IG1 + 1
       IG2 = IG2 + 1
       DO 15 J = 1, K
TEMP = X(J, IG2)
       X(J, IG2) = X(J, IG1)
X(J, IG1) = TEMP
   15 CONTINUE
   20 CONTINUE
   IF (I .LT. NGRP) CALL THTHT(X, K, NN, THJ, LTH)
25 IF (I .EQ. NGRP) CALL THTHT(X(1, IGSZ1), K, NN, THJ, LTH)
       DO 35 II = 1, LTH
   35 PS(II, I) = TH(II) - THJ(II) * ENGRP1
    50 CONTINUE
С
С
           INITIALIZE.
С
       DO 75 I = 1. LTH
       THJ(I) = 0.0
       DO 75 J = 1, LTH
       COV(I, J) = 0.0
   75 CONTINUE
С
          CALCULATE JACKKNIFED VERSION OF THETAHAT
С
С
          AND STORE IT IN THJ.
С
       DO 100 I = 1, NGRP
       DO QO II = 1, LTH
   90 THJ(II) = THJ(II) + PS(II, I)
  100 CONTINUE
       DO 110 II = 1, LTH
  110 THJ(II) = THJ(II) / ENGRP
С
С
          CALCULATE THE APPROXIMATE COVARIANCE MATRIX OF
С
          THE JACKKNIFED THETAHAT, AND STORE IT IN COV.
С
       DO 125 II = 1, LTH
       THJII = THJ(II)
       DO 125 JJ = II, LTH
       THJJJ = THJ(JJ)
       DO 115 I = 1, NGRP
      COV(II, JJ) = COV(II, JJ) +
* (PS(II, I) - THJII) * (PS(JJ, I) - THJJJ)
  115 CONTINUE
  125 CONTINUE
С
С
          IF LTH .GT. 1, COPY THE UPPER-TRIANGULAR SECTION
С
          OF COV INTO THE LOWER-TRIANGULAR SECTION.
С
       IF (LTH .EQ. 1) GOTO 200
       DO 175 II = 2, LTH
       III = II - 1
       DO 175 JJ = 1, II1
COV(II, JJ) = COV(JJ, II)
  175 CONTINUE
  200 DO 210 II = 1, LTH
      DO 210 JJ = 1, LTH
  210 COV(II, JJ) = COV(II, JJ) / ENN
       RETURN
       END
```